Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Infect Dis ; 225(5): 768-776, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1722480

ABSTRACT

BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold of ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.


Subject(s)
COVID-19 , Nasopharynx/virology , Respiratory Aerosols and Droplets , SARS-CoV-2/isolation & purification , Adult , Aged , Air Microbiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Canada/epidemiology , Environmental Exposure , Health Personnel , Humans , Inpatients , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics
3.
Clin Infect Dis ; 72(6): 1064-1066, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1132452

ABSTRACT

We enrolled 91 consecutive inpatients with COVID-19 at 6 hospitals in Toronto, Canada, and tested 1 nasopharyngeal swab/saliva sample pair from each patient using real-time RT-PCR for severe acute respiratory syndrome coronavirus 2. Sensitivity was 89% for nasopharyngeal swabs and 72% for saliva (P = .02). Difference in sensitivity was greatest for sample pairs collected later in illness.


Subject(s)
COVID-19 , SARS-CoV-2 , Canada , Humans , Nasopharynx , Real-Time Polymerase Chain Reaction , Saliva
5.
J Am Chem Soc ; 143(4): 1722-1727, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1065802

ABSTRACT

The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/virology , Electrochemical Techniques/methods , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Humans , Point-of-Care Testing , Saliva/virology
6.
Infect Control Hosp Epidemiol ; 42(8): 1001-1003, 2021 08.
Article in English | MEDLINE | ID: covidwho-977236

ABSTRACT

To compare sensitivity of specimens for COVID-19 diagnosis, we tested 151 nasopharyngeal/midturbinate swab pairs from 117 COVID-19 inpatients using reverse-transcriptase polymerase chain reaction (RT-PCR). Sensitivity was 94% for nasopharyngeal and 75% for midturbinate swabs (P = .0001). In 88 nasopharyngeal/midturbinate pairs with matched saliva, sensitivity was 86% for nasopharyngeal swabs and 88% for combined midturbinate swabs/saliva.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nasopharynx , Saliva , Specimen Handling
8.
Canadian Medical Association Journal ; 192(13):338, 2020.
Article in English | ProQuest Central | ID: covidwho-823895

ABSTRACT

Coomes et al present several facts about quarantine. Quarantine is a strategy for containment of infectious diseases that differs from isolation. Quarantine sequesters healthy, asymptomatic people exposed to an infectious disease for the duration of the incubation period, to contain the spread of the disease. In contrast, isolation refers to separating patients with active infection from healthy, unexposed people, to prevent transmission.

9.
CMAJ Open ; 8(3): E593-E604, 2020.
Article in English | MEDLINE | ID: covidwho-789886

ABSTRACT

BACKGROUND: In pandemics, local hospitals need to anticipate a surge in health care needs. We examined the modelled surge because of the coronavirus disease 2019 (COVID-19) pandemic that was used to inform the early hospital-level response against cases as they transpired. METHODS: To estimate hospital-level surge in March and April 2020, we simulated a range of scenarios of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread in the Greater Toronto Area (GTA), Canada, using the best available data at the time. We applied outputs to hospital-specific data to estimate surge over 6 weeks at 2 hospitals (St. Michael's Hospital and St. Joseph's Health Centre). We examined multiple scenarios, wherein the default (R0 = 2.4) resembled the early trajectory (to Mar. 25, 2020), and compared the default model projections with observed COVID-19 admissions in each hospital from Mar. 25 to May 6, 2020. RESULTS: For the hospitals to remain below non-ICU bed capacity, the default pessimistic scenario required a reduction in non-COVID-19 inpatient care by 38% and 28%, respectively, with St. Michael's Hospital requiring 40 new ICU beds and St. Joseph's Health Centre reducing its ICU beds for non-COVID-19 care by 6%. The absolute difference between default-projected and observed census of inpatients with COVID-19 at each hospital was less than 20 from Mar. 25 to Apr. 11; projected and observed cases diverged widely thereafter. Uncertainty in local epidemiological features was more influential than uncertainty in clinical severity. INTERPRETATION: Scenario-based analyses were reliable in estimating short-term cases, but would require frequent re-analyses. Distribution of the city's surge was expected to vary across hospitals, and community-level strategies were key to mitigating each hospital's surge.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Hospitals/statistics & numerical data , Intensive Care Units/statistics & numerical data , Surge Capacity/statistics & numerical data , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Canada/epidemiology , Forecasting/methods , Health Services Needs and Demand/trends , Hospitals/supply & distribution , Humans , Inpatients/statistics & numerical data , Models, Theoretical , SARS-CoV-2/genetics
10.
Rev Med Virol ; 30(6): 1-9, 2020 11.
Article in English | MEDLINE | ID: covidwho-731138

ABSTRACT

Coronaviruses may activate dysregulated host immune responses. As exploratory studies have suggested that interleukin-6 (IL-6) levels are elevated in cases of complicated Covid-19, we undertook a systematic review and meta-analysis to assess the evidence in this field. We systematically searched MEDLINE and EMBASE for studies investigating the immunological response in Covid-19; additional grey literature searches were undertaken. Study selection and data abstraction was undertaken independently by two authors. Meta-analysis was undertaken using random effects models to compute ratios of means with 95% confidence intervals (95%CIs). Eight published studies and two preprints (n = 1798) were eligible for inclusion. Meta-analysis of mean IL-6 concentrations demonstrated 2.9-fold higher levels in patients with complicated Covid-19 compared with patients with noncomplicated disease (six studies; n = 1302; 95%CI, 1.17-7.19; I2 = 100%). Consistent results were found in sensitivity analyses exclusively restricted to studies comparing patients requiring ICU admission vs no ICU admission (two studies; n = 540; ratio of means = 3.24; 95%CI, 2.54-4.14; P < .001; I2 = 87%). Nine of ten studies were assessed to have at least moderate risk of bias. In patients with Covid-19, IL-6 levels are significantly elevated and associated with adverse clinical outcomes. Inhibition of IL-6 may be a novel target for therapeutics for the management of dysregulated host responses in patients with Covid-19 and high-quality studies of intervention in this field are urgently required.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Interleukin-6/metabolism , SARS-CoV-2/physiology , Biomarkers , COVID-19/complications , COVID-19/therapy , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Prognosis , Publication Bias
12.
Hum Vaccin Immunother ; 16(11): 2586-2593, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-660414

ABSTRACT

Despite major advances in vaccination over the past century, resurgence of vaccine-preventable illnesses has led the World Health Organization to identify vaccine hesitancy as a major threat to global health. Vaccine hesitancy may be fueled by health information obtained from a variety of sources, including new media such as the Internet and social media platforms. As access to technology has improved, social media has attained global penetrance. In contrast to traditional media, social media allow individuals to rapidly create and share content globally without editorial oversight. Users may self-select content streams, contributing to ideological isolation. As such, there are considerable public health concerns raised by anti-vaccination messaging on such platforms and the consequent potential for downstream vaccine hesitancy, including the compromise of public confidence in future vaccine development for novel pathogens, such as SARS-CoV-2 for the prevention of COVID-19. In this review, we discuss the current position of social media platforms in propagating vaccine hesitancy and explore next steps in how social media may be used to improve health literacy and foster public trust in vaccination.


Subject(s)
COVID-19/prevention & control , Information Dissemination/methods , Social Media , Vaccination Refusal/psychology , Vaccination/psychology , COVID-19/psychology , Health Knowledge, Attitudes, Practice , Humans , Primary Prevention/methods , Propaganda , SARS-CoV-2 , Vaccination Refusal/statistics & numerical data , Vaccine-Preventable Diseases/epidemiology
15.
Oncologist ; 25(6): e936-e945, 2020 06.
Article in English | MEDLINE | ID: covidwho-31492

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread globally since being identified as a public health emergency of major international concern and has now been declared a pandemic by the World Health Organization (WHO). In December 2019, an outbreak of atypical pneumonia, known as COVID-19, was identified in Wuhan, China. The newly identified zoonotic coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by rapid human-to-human transmission. Many cancer patients frequently visit the hospital for treatment and disease surveillance. They may be immunocompromised due to the underlying malignancy or anticancer therapy and are at higher risk of developing infections. Several factors increase the risk of infection, and cancer patients commonly have multiple risk factors. Cancer patients appear to have an estimated twofold increased risk of contracting SARS-CoV-2 than the general population. With the WHO declaring the novel coronavirus outbreak a pandemic, there is an urgent need to address the impact of such a pandemic on cancer patients. This include changes to resource allocation, clinical care, and the consent process during a pandemic. Currently and due to limited data, there are no international guidelines to address the management of cancer patients in any infectious pandemic. In this review, the potential challenges associated with managing cancer patients during the COVID-19 infection pandemic will be addressed, with suggestions of some practical approaches. IMPLICATIONS FOR PRACTICE: The main management strategies for treating cancer patients during the COVID-19 epidemic include clear communication and education about hand hygiene, infection control measures, high-risk exposure, and the signs and symptoms of COVID-19. Consideration of risk and benefit for active intervention in the cancer population must be individualized. Postponing elective surgery or adjuvant chemotherapy for cancer patients with low risk of progression should be considered on a case-by-case basis. Minimizing outpatient visits can help to mitigate exposure and possible further transmission. Telemedicine may be used to support patients to minimize number of visits and risk of exposure. More research is needed to better understand SARS-CoV-2 virology and epidemiology.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Medical Oncology/organization & administration , Neoplasms/therapy , Pandemics/prevention & control , Patient Care/standards , Pneumonia, Viral/prevention & control , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Hand Hygiene/organization & administration , Hand Hygiene/trends , Humans , Infection Control/organization & administration , Infection Control/trends , International Cooperation , Intersectoral Collaboration , Medical Oncology/economics , Medical Oncology/standards , Medical Oncology/trends , Patient Care/economics , Patient Care/trends , Patient Education as Topic , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Resource Allocation/economics , Resource Allocation/organization & administration , Resource Allocation/standards , Resource Allocation/trends , SARS-CoV-2 , Telemedicine/economics , Telemedicine/organization & administration , Telemedicine/standards , Telemedicine/trends , World Health Organization
16.
Non-conventional in English | WHO COVID | ID: covidwho-276830
SELECTION OF CITATIONS
SEARCH DETAIL